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SUMMARY

In this report, the time domain exbensions of results previously

reported sre sought.

impul
C

ype

type

Bxpressions for pressure fields inside rooms due to a delta
se type excitabtion have been cbtained, both by wvsing a normal mode
epproach and by using a Helmholtz rescustor analogy.
These results have been gpplied to the specific case of "Hf-wave
excitati

e
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series of reports (1)
wave entering the rocm

for the sound
through & window.

d g wave 1s in the form of a transient sig he
same expressions.could be u%ed to coplute the spectrua of the sound field
inside the room, i 7 i : 1

the time uzed to achi e
either th LH@ er ace tramsform tﬁ“hHTuhhuo A direct

method of igues, leads to cumbersome expressions
£

on
wvhich are ult to comwuieu An adaptation of the technique, similar to
Mintzer's ovever, lcads to a solution which essentially consists of
the multiple reflection approach (3), in vhich reflection at +“e end wall is
described by means of a unit funcbion with suitable retarded - time arguments.

L
The series, so obtained, is seen to posess, ab any given tlme9 only a finite
number of non-zero terms.

It is shown in the second chapber how this description is perticularly
suited to represent the ecarlier ps ft of the time history of the response.,
This part of the response is most gnificant from a subjective point of view.
When the sound field in the room has becowe fairly well diffused
the room can be justifiably represented by a lumped acoustic element (or
several elements), part: when the €‘b :ntion is shifted to the lower
frequencies. Eheref@re bk mioltz rescnator approach can be used to
describe the later part of the time history. This p&ru of the response is of
1

lHLU“"GU, 'll from the structural point of view {and hence the shift of
Y :
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Wulca* theory of integral
ig reviewed. The results
which 1s suitable for time
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(t,2)
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‘nsd
T om,n
s R 7
m,n

i

Width of the room
Amplitude of the incident wave
Height of the room

Cs

opeed of sound

-t
(1]

¥

Lumped capacitance of the room
Depth of the room
Base of the natural logarithm

Heaviside unit Tuunction
&

Square root of minus one

e

Attached mass of the window

Modal paremeter

) 1

Modsal pareameter

e

An integer representing number of reflections
Acoustic pressure phasor

. th . ot n .
Component in the (m,n) mode of the field generated
inside a room due to an incoming sonic~boom type signal.
~ip

o . ) th - .

Component in the (m,n) mode of the field generated
insice a room due to a delta function excitation

Components of 5, R above.
m,n m,n

Tine




freguency

Natursl radisn i

Tunction

requency of resonator.




0 t < O
HiE) ¢ ( ) (1.1.1)
A 1 , (t > 0)

The function is alsc called the unit step function.

o

Another function, §(1), termed the Dirac delta function, may be defined
by the following equabtion :

£
( §(t) atr = H(%) (1.1.2)

It has a zero value everyvwhere except at = 0 .

It is interesting to note that if
: -t
GH(ngt) =] -e 0 (1.1.3)
and L %—
M .t m o e M s 02
Cé(n,t) se : (1.1.h)

GH(MJ‘?) behaves like H(t) when n + 0 and G.(n,t) behaves like §(%t) when

§
n - 0. These two forms could be consideréd as sort of ‘relaxed
of the unit step and delta functions.

! Torms

The following properties of the delta and the unit function follow
the ; :

from thelir definition
[es]
f £lt) §(t - 1) ar = £(t) , (1.1.5)
oo

and
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equations
an oubvub,
Furth

uzﬁ;iravy LT

It is seen Trom
given by

Xf(t) = | £(7) XS(t - T) dt (1.1.7)
and
{AG’D ol
Xalt) = §§éij- Xt~ 1) dr , (1.1.8)
R J L _i

a
(see reference 4, p.U9). An additicnal term is required in (1.1.8) if the
function £(t) is discontinuous (4, p.Lg). '

’)

B
Thus the task of finding the response of a system in the time dowain can
be split into two steps: step (i) find oubt the response of the systen to either

D oLa
a delts impulse function cr to a unit step function (ii) use the appropriate
convolution integral (1.1.7) or (1.1.8). The genersl procedure for step (i)
is described in the next sectio

1.2 Fourier and Laplace Transform Technique

~-iwht . .
Assume that the reunonse of a system to an input e 1s known and the

response to either a delta excitation, 6(t),or a unit step excitation, H(t), is
required. :

In these contexts, the following relationship found to be useful :
I f “w i e
£(t) = { ww) e an ' (1.2.1)
i <) 5
Flw) = ~%; J £(t) & an . (L.2.2)

f is said to be the Fourier transform of ¥ snd the relationshiyp stabes

thet, conversely, 27F is also the Fourier transform of 1.
. . ; o . ) . ] -1wh .
Noya,lf it is known tha > Tes i system to an input e 18 ¢
. \ L . - - " . . - e UYL
Hlw) e 797, it foilowsiuha" he response of the system to sn input A(w) e
shall be A(w) ¥lw) ¢ “¥7.
Furthes
£O0
1 [N wh \
S S0 e at = 1.0
on ; \ 3 (1 ZeD)




to an excitation 8(t) can be expressed

(e el

oy 1 . -1wt ‘ i

Xs(t) = f e w) e do . (L.2.5)
Similarly,
3
-1t ~1 / .
o = —l—— 2

e at P (1.2.6)

and therefore

/ S B -1wt
) = e s o .
H(t) J Srim e dw . (1.2.7)

Therefore the response, XH(t), to a unit impulse excitation, H(t), can
be expressed as :

i

XH(t) { L ¥w) e“iwt dw . (1.2.8)

2Tiw

- €O

Integrals (1.2.5) and (1.2.8) can be evaluated by the usual infinite
integral techniques. It is often prefersble to convert these integrals into
the Laplace transform form, which can either be regarded as a generslized

form of the Fourier trensform or & specigl form of Mellin's transforz.

Substitute in (1.2.5)

s = -iw (1.2.9)
and = .
“ ¥(s) = x(is) , (1.2.10)
to obb:
. # Iit"lv
~r A l ‘ T3 Y St /
A (“t) s ] A({" (&R \“’agvi}.)
G 2L i ’

1
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and the inverse Laplace transform of g(s) is given by the relation

=]

ctiw

/

gls) = L gla) e~ at . (1.2.14)

13
[

£(t) .
271

ci-iw
¢t is supposed to have a vanishingly small positive value. Physically,
its presence indicates the inevitable presence of dissipation in the system.

%(s st
:H(t) S R(s). e’ dt (1.2.15)

= b Elsly (1.2.16)

Thus the problem of deducing the response of the system to either s

delta or unit step impulse reduces to that of finding the inverse Laplace
transform of either X(s) or X(s) , where X(s) is obtained from the amplitude

E

)

of the steady-state response, X(w), by mesns of the substitutions (1.2.9)
and (1.2.10). Bateman (5) has edited an exhaustive collection of formulae
to obtaln

The procedure to obtain the time domain response of a system to an
o

arbitrary input, f(t), can now be swmarised as follows :
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FIGURE 1 A SECTIONAL END VIEW C)F THE ROOM AND THE FRONT VIEW IS
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wave,
= b
p. = AL Y
1s given by the equation
, ~igt o mEx nTy. :
P o= 24 e F W,2) CO8 —= 0Oy~ 1.3.1
: Lo tan (w,2) cos a b (1.3.2)
m,n :
where
“'/ma M2 w2
) 0 I 1 -
cos |Vg = ()T - (- (-2
m,n k 2 a . b )
- o
i [P = T T SR -
1n,n( 2) /e
cos[ﬁmwA (A2
L2 g,
C

(1.3.2)

R normalising parameter which depends upon the geometry of the
1 T s 3 » . -
problein’and it is independent of w. Further

'Uéu Iﬁﬂ'» ::WM b o §
AL (T2

men:[ 2 a b A2 -6 Je~& ) T 2re
c “o,n o,n (

i
——
1
o]
3
S
he
]
-
=
o
st
g et
-

The pressure field inside the room due to an incoming wave, which is

represented by a delta~impulse, i.e. p. = §(t), is given by the inverse
A . i
Laplsace transform of
P (s,n)
m,n
multiplied by
X nny
cos === cos =k
g b
F r(sﬁz) is obtained by substitubing
g}
m,n
S = <1 (1.3.1)
for i .
m




. ( L R S ———— S
m,n 0 o -
i . /2 2 -
cosh — Ys = + g IL +
m,n m,n -
where R
‘ A Ny 2
o = V)T () )
m, 1 a b
and 2
- ab
. N N, n
m,n - N - LD
> - 6 2~ 8 leh A2
(2 0. ( ogn) £1%p.
Expansion of the hyperbolic functior

use of the binomial theorem re

f
i
R m,n
1ﬁ,n(S’Z} - * 6%8 l
: ven 1 ds g, Ly
e oret
where -
nm nLl )
i (=p = 3 e
u Ingn) " : ’
n i -+
m,n
2 2
r (=r_ ) = /ga +oo .
m.n m,n
Bvaluation of the transform of iﬁ.r
5 1

ro

pus

st

C

in the next

(1.3.10)

section.




> ol S - \ -
- (2nd v og) = 2 {(Ont2deu |y
; ¢ ¢t o
} = & e : ]
1 o]
(£.1.1)
Voo © (p.1.2)
L (2.1.3)
2
n ab . )
0,0 = == {p.1.4)
jide
&
. ) ) Ms . . . e )
It will now be assumed that the term T TOr the most significant
~ faly |}
. . e - . ; . .
range of s, 1s much smaller than 1. Mé* car. be viewed as the wavelength of

the spectral component of the signal under consideration, snd M, the
mobility, is very nearly equsl to the di he circular window which
is equal in area to the actual window. The greater part of a representative
sonic boom spectrum (and to a lesser degree t subjectively weighted

in most cases, falls in the range of validity of the assumption. Expressi
arve cbtained by using this assumpbion and in section 2.2 the modifications
which would be necessary, in the absence of its validity, have been disc

With thig assumption

. S L ) (2.1.5)

>

©wo be used

. VT D=1
Y SN [
L AL = e ) _ e { o(s)} + h(t) ,
(Smaf )MA pﬁl (L/"‘l) e (11“‘_@} « dQ‘DMl S::‘El?




]

no.v L n-1): ~=2 \12=D
=e Ty e R (m;{‘. )l .
p=1  (p-1)1[{n-p)t]

and therefore

nl) o (z2yntlep

- n41-p
= n+l-py (6/n) ~7F
8} Cpml {2 } (Eﬂklmpﬁ

Sk

vhere
Nblep = n+lep

Bn,p-1 = (-1} n ¢ 2
s p"l { }
and the binomisl coefficient, nCp, is given by

nCp =

T e e e
o follows that

(2.1.7)

(2;1¢9)

(2.1.10)

Yoot
OV




. N 0l
e ) B, p-1 : (2.1.11)
! =1
OF Tearranging,
t
n -p
e X - (t/n) ®
= e e B O e s}
n ?: 5 (Dﬂ-‘p}i 5 (._’l«_l_g)
p»—,
= g (t) (2.1.13)
say.
Bvidently,
- Nty . ‘
Bo,p = (-1) P fcp Py (2.1.1k)

The translation property is now used to obtain the transform of

Foo(sgz)°

This property cen be stated as follows (5): If Lwl(g(s) = £(%)-and
b' he a constant,

- 0 t < bt

-1 ~bfs

L [e g(s)] = . (2.1.15)
: - f{t=-b") t o> Dbt

The definition of the unit function can be used to rewrite eguabion
(2.1.15) as

\
]
P
fd
‘
V)
e
&
3
.
-
"
-
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o
o
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The form of the eguation
make it sarent that tl o
represent the contribution of the
the room due to an incoming ‘delta! impulse. Le
by the symbol & s0 that

0,0

s

ion (2.1.17) wh
(

e
0,0) mode to the field gencrated inside
'L—l o

-
s

s (t,z) = 2"t F(sL2T . (2.1.18)
0,0

[
This mode corresponds to the axial wave which moves forverds snd
backwards between the end snd front walls. The progress of the wave can be
resdily traced.

-

4L . . « - .
The term wo(t w-z) comes 1nto operation at any point z when a time of

Z

L

zZ ‘ . . . " as ,

= has elapsed. The term is, in fach, a distorted form of §{t - =) ~ distorted

: c

due to the passage of the incident wave through the sperture. The next term,
z . . o - ,

“-wﬁﬁ comes into operation after the wave has reflected from the end

wall, and so on.

It is evident, due to the presence of the Heaviside functions, that at

5

~any given instant only a finite number of terms have & non-zero value.

2:2 Effect of the Term (%%E)
= i

It is recalled that

(0 [ale!

LA
e




Further, if

mE oz 5 (2.2.4)
T ) (2.2.5)
In the extreme case A}kg -+ 1 and therefore S o is aboubt five bimes
- 5
greater in Ldgh MU In genex 1ld be meny more times
gregter., This can be use wing argume nt e
-y ~ by
_ Mrs® ¢ o0 gay] M
le , 0 0,0
’ - St
Mg + n ;+ij
10,0 0,0
b - =3
N R n
1 (n s-1)"(M's + 1)
= I 229 i
. 1, i+l
(n 8+1) (M's+1)
0,0
=
1 (n, s-1)
= LT e e . 2.2.6
T MsTel - yIEL ( )
N iy
-
n
-1 (no oS"l) ’ .
- smmm“ﬁgfi vas found in section 2.1, equation (2.1.12). A revised
¥
(n_ s+1)
0,0

5

form of wa(t) can be obtesined by substituting the expression (2.2.6) for its

value. This csn be done by using the convolution integral for the transform
of & product (6).
Such a procedure leads to the following expression :
E "’bt/n t/l“"‘E E
( ¥ MY nep —e (t/n) 7" (t/n')
G R e Rl =N § 4741 L0 NS .74
- n,p Mien n - n-p). 1
P=0 - 0,0 0,0 ~M

ot
=
g
P
o}
ot
S
7
o
Yoot
<
=
1
i




“C
O 4 ¢
e : . e . -
T 18 modifled Lo the form
t
0,0

The medificegbion is i
origin. Other terns vh& ergo a
small, whee MY i1s much small

2:3 Formu
fowli

rse Laplace Transforms

It was shown in the previous sections thatb

0,0 P=O

[t-—( [2h+2) chi -

. o
nO$O< _— tm(12122jd~ﬁ)/c P
4
e \* P 2 Le=
+ - Lo B 22 H(t - -r-‘—~~—mmz)c Z
0,0 p=o » P (n-p)t

(2.3.1)

To evaluate the inverse Laplace transform of ﬁm n(syz)g the inverse

thove, is required with the
and the substitution of

fUﬂction
see equat

in the previous chapter

vould leave its form




Rl
X
o
—
2
fa
o
pom
<
-

where I .
o ‘/524-02

and CLm 0 is a constent. In the context of the present work o is given
by the éguation (L.k.6). Iy is the RBessel Tunction of the Firsl order.

2.3.1) corresponds to the following

For n = 0, the first term of {
relgtionship :
(t - 2)
c

o1 6: ZZ o 0,0 )
TR SN - Rt - 2) (2.3.5)
1+ nQ OS 0,0
It can be deduced therefore that
L2
“ Ny
- EZ o nm:,n ”

H(t - ‘m) ° (2.3-6)

The relationship (2.3.3) can be used to show that
vA
t -2
(v - %)

T
LS Y.L T T
c . m,n .
e (H(t = =)

1+ n T
m,n m,n m,n

1 2 z
e 10— 1)
C

Rt ﬂm n
1.
e L]

6
J 1 m,n

v

m.n N
ol m,n
o -
(2.3.7)
Denote this term by
50, 1y -
) [
m,n

w0
(9]




Lo rovrite the inte

Substitute
/ Lo 2
LS u

ozl b= | (2.3.9) (

m,n

BT

P
A2 - n B g7
m,n

g0 that u = ; and as u goes from O

D

o 2
/g Z . . , z ; '
to V&7 « - , 0 goes from t/n_ _ to —"——— .  Therefore
T, n cn

z
- (t - =) C
n_ c _z
0,1 1 E
- A ’ £]
t,z) = » - a n m,N (e - =)
m,n n myn m,n c
m,n
Z
cn
m,n
(2.3.10)
The evalushio f s 1ntegral wil tempbe sing the method of

N e PR
1 pary to 1

results

v de N ey ey v
nvegrave anc

convergence.

does not

for




Let us
50 that

- Zﬁ-‘ N
en
m,

5

Now it is readily verified that

a

2 2 2
J (e +C - 8%) I, n
-0 9 1" " m,n I, 1
D = | -e "+ 1] e
l AP 0
. m,n I
en
m,n
x
], -
5 m,n 7 (
4+ 0 N ~0 y p) .
m,n m,n e le + 16 5 ans
N
¢

m,x

J 6706 = -+ 2] . (2.h




//r)w
J {a N
o oy o L
v i ~ - = On 5 ’\r\cl‘<,)
WA (s & o 2 \ in,n
ab (t7 - n> 87
m,n
and
~g .2 1. AN "
e {D‘ + GJ at = - [8 + 30 + 3] s, €eteg

(2.4.0) cen be rewritten as

J. (o - N

2 L -8+ 3 ol 3 m,n m.n
+ oy 87 + 6867 + 98 + SRS RN 0% S SNSRIt

¢ )m,n 9 9] ( V%Em n2 Gj)j

m,n
e st . ‘...-t
— L

36 -8 u 3 oy Jhﬁx,.] .‘1‘/'52"’1"1]_21 . 6 7Qm,’m

+oan e e+ 1087 + 596° + 876 + 87] - Ll L

o) -
myn (t2-=~ T)l; . Gd) j
5

(2.4.6)

Now since

lim

o+t/1

i,
LI




W,
linm
0/ !
etc. Therefore
i, n 7
=D n st H(t = &)
m,n  m,n C ®
Z
(e 2)
s 2 ¢
Y. n
Z e " m,n 1m,n v
T
<t - Z) {f by
(6 - 2) (5 5 ( )
W, n m,n
R,
(5]
2 Le  z”
%m,n J( mon VYT ped
- (Bl S ARG
c m,n m,n , 2
2 Z
£ . —
Y
02 22
¢ z
m,n ) m,n o 2 2
i U G R
2 Mmyn 1,0 c m,n myn
c
Now if
(. 2
B,{b,~) =
l( ’(> 7

so that

Y

el

n
T, n

(2.1.8)

(2.h.0)




) '
e m, 1 , N , -
T {Hmww'+ 1 i (2.4.13)
| m,n

Terms neglected in (2.4%.11) have their coefficients outside the square
breckets starting with of nl  or more.
m,n m,n

It can be noted that all te:x

excepl the first one,
%

2.5 Evalustion of the Integral when a_ _n >
— . e T YL L T

i._}

Consider again the integral denoted by D. Since

P —
2 2 2
. J. (Oé)/t -T 6 )
] 2 2 2 1 m,n
= J (o ‘z/"’o - e g ) = g n_ 6 o e , {(£.5.1)
66 O m,n 1,7 M1 Tk, 11 ‘/tgw 112 6
MmN
de = g J (a ,/’t(‘m e G?‘} .
2 o' m,n m.n
on
’ m,n
(2.5.2)
Therefore . LT

=
I
WV}
—




;oo I's ~y £y I} ~
o ‘/ta 2 _;K T (C /i rﬁm %r
B 3 €
60 m,n W, 1 i m, 1
2 2 2 - .
= -0~ 7 6= I (o V5=~ 07) (2.5.4)
n,n  m,n O Mm.n W, n

2 2 2 TN
{ 5o 2 // T n6 J“(Um w/%{ Ty DO()
-l o o o L 5 11 i) ¢ 12
- 8 J (et 1" 67) d6 = 2 2
J o} m,n o ’72
m,n m,D
(2.5.5)
Thus it is seen that
| e R s
S22 L2zt 2 g
=0,1 7 cﬁam nrt = =) T _*jful(am n‘t - w§>
50 N 6,2) = ult - 2) (- < s o komen  cf
myn c 1 ) 3 % \
men G n ) (-~ N
m,n m,n en
m,n
7
e — + . 2
2z > 2° /2 %2 - ( wﬁl
Tl 0 I - T S Z
( cn ) 2> 2( m,n 2) nmsn
~ m,n ¢ c . L e
= ¢« & v
7, 1
2 ’ wMZ*—-M“)E Hnsn

~ noo
m,n - m,n en
m,n

2.6 The Helmholtz=-Resonator Approsch

magine a rigid piston to occupy the area represented by the window in

t
Figure 1. Let this piston possess a mass of




resonators

artlcularly such lesses are smal

nove

It Fhn syt ek oo e ey 5
To the hypothetical wviston, vwe

v
C {=——x3),
» W i
- p C
"o
which takes into account the springiness of the air inside the room.
‘Bssentially, it represents the units of the piston-displacement required to
produce a uniform pressure-rise of unity in the room. Now if the plesbu1
S . . o A :
in the incident wave for z < 0 is represented by W{t V'E)ﬁ the blocked
reflected pressure at z = 0 is given by 23(t). Therefore, if &(t) be the
displacement of the piston under the influence of such a disturbance, the

(&)
relevant differentiel equation of motion may be written as

. o+
LoE(e) + R E(6) + SEL o 5oy . (2.6.2)

A Laplace transform of both the sides of the equation (2.6-.2) results

And therefore

- . (2.6.h)

E(t) = &2

But

-1 1 ’ e an §it (

s \ (2.6.6)
ol




used to

(p.6.8)

(2.6.9)

However, the general form of expression (2.6.8) is also quite useful,
a3 seen in the next chapter.

3.0 RESPONSE OF THE ROOM TO AN TNY WAVE

3.1 Introduction

The expressions derived in the previous chapter are of a geaneral nsture.
Once the time history of an incoming transieat is known, convolution formulae
cen be used to obtain the response of s room to thebt transient.

This technique has been illustrated in this chapter by choosing a
specific example of an 'I' wave type signal.

It should be noted that certain parts of the discussion which follows
involve some approximations which are relevant only to idealized sonic boom
type signals.

Let us now consider the response of the axiel modes to an N wave
excitation given by

ey
o~
)
A
O
~—

20
= () -%w) , (0 gt <)
= 0 . (4 = 7) (3.2.2)




T L 1 Ny TN P -k LY
Lag e Giit i o LR WA GRS S T VR LV (11
R OT T N I S . CL
COMYVO LG O M
de
™ * H + - k]
R O(L(,z,) 2 | =y (\(L.;Z) J(f_mf> at
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FIGURE 4

(@) A SONIC BOOM TRACE WHICH IS A MODIFIED FORM OF THE 'N* WAVE,
WHERE THE SHARP SHOCKS AT THE FRONT AND THE END ARE REPLACED BY
FINITE DURATIONS OF RISE AND FALL TIMES,

(b) A FURTHER MODIFIED FORM. A STRAIGHT LINE REPRESENTATION IS ASSUMED .

) A MAGNIFIED PART OF (b), WHICH IS TAKEN AS A BASIC UNIT TO FIND THE
RESPONSE.
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3.7 AuDIOVWNatf

legponse to on I Wave

The equation (2,3g8) can be interpreted as follows. The first term in
the cquare brackets corresponds to the axial-mode type of response. The second
term corresponds to a devietion from it. The varistion critically depends uonon

S 7 ,
the non-dimensionsl parameters &xm ﬁwmAn) gdd (men ) - {(When the response to an
m, NI, 1

N wave is considered a further paremeter (—=>=), énters the discussion). TFrom

thig point of view the following possibiliti

i) The contribution due to the CO;J@CT]OH term might be nvbﬁiglbwve
In this case the axial-ty ype teym predominates and the final contribution can
be considered to be spproximataely equal to the contribution caleulated by
using the same formula as for the axisl modes with the subsn tution of Ny

for n and O cos mmx  cos nty  for 5 . e
0,0 m,n == U7 = 0,0
8, b
“m,n
This happens in the very near field of the window, i.e. for-~*i~* << 1,

(see equations (3.6.6) and (3.4.3) followed by the discussions).

5

ion (
uld become imaginary pelow a certal

This also happens when ey gy > L This condition is genersglly
- Ly 1ty
satisfied by modes with smaller values of m and n. This observation may be
associated with another observation in the previous report (1). It was found
; . i

n cub-off

this would alter the characteristics of trans-

mission. Thus L .0 >> 1 appears to be g modified condition which states
"L5" Eaf

that the substantial paft of the spectrun corrvesponds to those freguencies
which are above cut-off.
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From egquations (2.6.8), (3.8.1) and (3.0.2), it is seen that
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(2 . , .
. u'" ds elready assumed to be much lesser than unity. Therefore, the
coefficient outside the brackebs could well be t aken to be 2 Aj .

3.9 Humerical Results, using Noymal Mode

If the window were to extend throughout the width and the height of the
room, only axial modes (designated as (0,0)) will be present, vrovided the

assumption of a uniform velocity over the cross~section is msde.

For such a window, in a room of typicsl dimensions, both the atbached
inertial mass, and also the resistive component of its radiation impedance,
are small for frequencies less than 2C/L, where L is window perimeter. If it
is assumed to be zero, and if the response to an incoming, N-wave type, signa
is celculated, the results would be as shown in Figure 5.

The reflection pattern is very clearly seen. The points nearer to the
window receive the &1¢4~1 earlicr and the reflected signal from the end wall

- 5 @]
later. Reflections from the window involve a phase change of 1807 and
o 7

beckward and forward reflections persist undiminished in the 'free os
period.

o

when the inertia of

7 and the absorption
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analogy epproach, 1

A specific case 1s sho [ The volume of the room was
2430cft. The windew sres was 12 s t | cident boom had a time duration
remeber u are used.

For the oub-door sonic boon on the subjective response (8
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of the transient pressure

the room are known,
the room can be pre

Tvwo approaches have been
of obtaining the stesdy state z
ref.l) and

18 based on
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